
Test vector generation in post
silicon verification and validation

process

Intro
David is an engineer working for Infineon, a semiconductor manufacturing company. His role involves

verifying and validating semiconductors that are used in safety critical systems, such as those found

in cars, airplanes, medical equipment, communication systems etc. David takes great pride in

knowing that his work contributes to keeping people safe and secure in their everyday lives. He

spends long hours running tests and analyzing data, ensuring that every chip meets the highest

standards of quality and reliability. David’s dedication to his work and its importance in ensuring

safety make him an integral part of Infineon's team.

Samples
David's job involves testing multiple variants of chips (samples). Different chips are designed to meet

different specifications and requirements depending on the specific use case they are intended for.

For instance, chips designed for use in medical equipment may have different specifications than

those designed for use in automotive systems. Additionally, chips may be delivered in different

packages, such as a small outline package (SOP), a quad flat package (QFP), or a ball grid array (BGA).

The package type can impact the chip's performance and can influence the test methods used by

David and his team. Therefore, David must carefully consider the specifications of each chip sample

and the package it is delivered in when developing his testing approach. To ensure that every chip

meets the required specifications, David performs a range of tests on each sample, his attention to

detail and expertise in testing ensure that Infineon's semiconductors are of the highest quality and

reliability, regardless of the specific application or package they are designed for.

Let’s stick to a single example where David is testing samples of the AURIX™ microcontroller family.

David has been given the responsibility of conducting measurements for this project over the course

of the next few months. The table below presents various chip variants that he will be working with,

along with their corresponding sample code names.

Samples (Project.Samples)

ID(.Id) Family name(.FamilyName) Product name(.ProducName) Name(.Name)

1 AURIX™ TC3xx POR1

2 AURIX™ TC2xx SS1

3 AURIX™ TC2xx POR1

Input conditions
As part of the testing process for each sample, David needs to test different input conditions that are

specific to each chip's design and intended application. These input conditions can include variables

such as temperature, humidity, input voltage etc. Testing under different input conditions is

important because it can help identify potential issues that could arise under real-world operating

conditions.

Input conditions(Project.InputConditions)

ID(.Id) Parameter(.Parameter) Minimum(.Min) Maximum(.Max) Time Between Points(.TimeBetweenPoints)

1 Temperature -40 150 5

2 Humidity 10 30 15

3 Input voltage 0 5 0

4 Frequency 5 50 0

Test point collections
While input conditions are specified on project level it could be that their boundaries are fully relevant

for each sample. Each sample may be tested with different test point collections depending on its

specific application and design. A semiconductor chip designed for use in an automotive application

may need to be tested under extreme temperatures and varying conditions to ensure that it can

operate reliably in the demanding environments of a car. In contrast, a chip designed for use in a

home appliance may need to be tested under different humidity conditions to ensure it can perform

reliably in a range of household environments.

While some input conditions may be specific to a particular sample, there may be some that can be

shared across multiple samples. For example, testing under different input voltages may be relevant

for all samples, regardless of their specific application. By sharing input conditions across multiple

samples, David can optimize the testing process to ensure maximum efficiency while still maintaining

the highest level of testing rigor.

Test point collections(Project.TestPointCollections)

ID(.Id) Input condition ID(.InputConditionId) Sample ID(.SampleIds) Test points(.TestPoints)

1 1 1,2 [-40, -20, 0, 20, 40]

2 1 3 [0, 20, 40, 60, 80, 100, 120, 140]

3 2 1 [10, 20]

4 2 2,3 [20, 30]

5 3 1,3 [3.3]

6 3 2 [3.3, 5]

7 4 1 [5, 15]

8 4 2 [5, 25]

9 4 3 [5, 50]

Test vectors
Test vectors are essentially sets of input values that are used to simulate the

operating conditions of the chip and to verify its functionality. As part of the testing

process, David needs to generate test vectors for each sample, based on the test

point collections that are specific to each chip's design and intended application.

Test vectors for sample 1

Index Temperature Humidity Input voltage Frequency

1 -40 10 3.3 5

2 -20 10 3.3 5

3 0 10 3.3 5

4 20 10 3.3 5

5 40 10 3.3 5

6 50 10 3.3 5

7 100 10 3.3 5

8 -40 20 3.3 5

9 -20 20 3.3 5

10 0 20 3.3 5

11 20 20 3.3 5

12 40 20 3.3 5

13 50 20 3.3 5

14 100 20 3.3 5

15 -40 10 5.0 5

16 -20 10 5.0 5

17 0 10 5.0 5

18 20 10 5.0 5

19 40 10 5.0 5

20 50 10 5.0 5

21 100 10 5.0 5

22 -40 20 5.0 5

23 -20 20 5.0 5

24 0 20 5.0 5

25 20 20 5.0 5

26 40 20 5.0 5

27 50 20 5.0 5

28 100 20 5.0 5

Engineer experience
While it's important for David to generate test vectors that accurately simulate the

chip's operating conditions, not every possible combination of input variables needs

to be tested. Some test vectors may not be possible or relevant for a given sample,

and it's important to skip those test points to optimize the testing process.

With his experience and expertise, David can identify the most critical input

conditions to test for each sample and generate test vectors that prioritize those

variables. He can also recognize when certain combinations of input variables are

not relevant or practical for a given sample, and skip those test points to save time

and resources.

Another important consideration when generating test vectors is the order in which

the input conditions are tested. Some input conditions may be easier or quicker to

change than others, and it's important to take these factors into account when

designing the testing process. For example, it may be easier and quicker to change

input voltage than to change temperature, so it may make sense to frequently

change voltage instead of temperature.

Properly sorting and prioritizing the input conditions for each sample can help

optimize the testing process and ensure that the chip is thoroughly tested under a

range of critical variables. By leveraging his experience and expertise, David can

design test vectors that effectively simulate the chip's real-world operating

conditions, without unnecessarily testing every possible combination of inputs. In a

table you can find test vectors edited by David.

Filtered test vectors for sample 1

Index Is used Temperature Humidity Input voltage Frequency

1 TRUE -40 10 3.3 5

2 TRUE -40 10 5.0 5

3 TRUE -40 20 3.3 5

4 TRUE -40 20 5.0 5

5 TRUE -20 10 3.3 5

6 TRUE -20 10 5.0 5

7 TRUE -20 20 3.3 5

8 TRUE -20 20 5.0 5

9 TRUE 0 10 3.3 5

10 TRUE 0 10 5.0 5

11 TRUE 0 20 3.3 5

12 TRUE 0 20 5.0 5

13 TRUE 20 10 3.3 5

14 TRUE 20 10 5.0 5

15 TRUE 20 20 3.3 5

16 TRUE 20 20 5.0 5

17 TRUE 40 10 3.3 5

18 TRUE 40 10 5.0 5

19 TRUE 40 20 3.3 5

20 TRUE 40 20 5.0 5

21 TRUE 50 10 3.3 5

22 TRUE 50 10 5.0 5

23 TRUE 50 20 3.3 5

24 TRUE 50 20 5.0 5

25 TRUE 100 10 3.3 5

26 TRUE 100 10 5.0 5

27 FALSE 100 20 3.3 5

28 FALSE 100 20 5.0 5

Task
Assist David in his daily tasks of generating test vectors by developing an application

that takes test point collections as input and provides him with a user-friendly GUI. The

GUI should allow David to prioritize input conditions and exclude specific test vectors or

combinations and generate a .csv file with the target test vectors as the end result. It is

essential to optimize the application's performance as the list of test vectors can be

extensive, to prevent David from wasting too much time. The application can be

developed using any technology, and the inputs will be provided through a set of JSON

files. Solutions will be evaluated both on performance and user experience.

Bonus tasks

Updatable test points
Test points within the collections can be updated, so the application should

minimize repetitive work when David needs to modify the test vectors. Make sure

that whenever a test point is updated the test vector containing that test point is

also updated.

Input time constraints
By default all our inputs are treated the same. David decides what inputs should be

of higher priority, meaning less changes on the environment for that input. Notice

that our data set contains the average duration for changing the value within the

environment, e.g. changing the temperature cannot be done immediately, while

changing voltage is basically instant. Can you assist David in automatically ordering

the inputs based on their switching duration? Note that it still should be possible to

manually arrange the inputs afterwards.

Multiple output tables
Remember the sample names before? As the output table is valid for one sample

only, David needs to execute the same procedure for multiple samples. Can you

make it so that David only has to do it once, but receives multiple tables for his

different samples?

Test vector editor
So we took the test points as out input, now it is time to work the other way

around. Can you visualize the generated test vector in a table and make David be

able to edit the test points within the test vector.

Inputs
All inputs you would need for the task can be found on the repository here:

https://github.com/kruljacInfineon/STEMGames2023

Please note that the repository will not become active before start of the

assignment on Friday the 12th of May 2023. In the repository you will find multiple

JSON files that represents the inputs described in the text above. These invaluable

https://github.com/kruljacInfineon/STEMGames2023

resources can be utilized during both the development and presentation phases of

your solution. Note that the blue text in the headers of each table above represent

the JSON keys within the input documents.

Scoring
The task will be evaluated based on both performance and user experience. The

following distribution of points will apply:

• Main Task (50 points)

• Updatable test points (15 points)

• Input time constraints (15 points)

• Multiple output tables (10 points)

• Test vector editor (10 points)

Note that in general a maximum of 100 points can be achieved, however bonus

points are given for creativity which makes it possible to exceed 100 points. One

example: you think of a very good additional feature that could be useful. If the

jury finds the feature useful as well and if it was executed properly, you will be

awarded 3. There is a maximum of 15 additional points.

For the main task, three major components are graded. Each component has

several sub-components that are important.

Methodology (10 points)

• Version Control usage (e.g. Git)

• Task management (e.g. Jira, Trello, GitHub Project)

• Team work (e.g. good discussions, not one person did all commits)

User Experience (20 points)

• Style factor

• Intuitive, informative, proper use of language (e.g. grammar) and not

cluttered.

• Clicks to action

• Accessibility Features (e.g. vision deficiencies)

• No exposed bugs or misbehaviors

Performance (20 points)

• Availability of benchmarks

• Speed compared to other teams

• Consistency

• Fluent UI (no spikes/freezes)

• Responsive (e.g. visual feedback)

For the bonus tasks, it is important to provide the described functionality.

Distribution of the points for each bonus tasks depends on the completeness of

your implementations.

